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Abstract: A pressing concern for contemporary large language and computer vision models is the degree 
to which they memorize training data. Memory and memorization were essential to the development of 
early machine learning, especially as these techniques were intended to assist research into brain models 
and perceptual systems, but their operation was contested. Early “learning machines” were developed as 
analog alternatives to general-purpose digital computers and required storage of learned data. As in the 
present, the role of memory and memorization in these systems was contested and the available analog 
devices and architectures implemented different theories of learning and memory.  
 
 
In the present moment, there are numerous discussions and debates about the function and even the 
possibility of memorization in artificial neural networks, especially in large language models (Tirumala 
et. al., 2022). A model that has memorized content from its training data is particularly problematic, 
especially when these models are used for generative tasks. Desirable outputs from generative models 
are those that closely resemble but do not exactly match inputs. Corporations developing and releasing 
these new technologies may make themselves vulnerable to plagiarism or theft of intellectual property 
charges when an output image matches those found in training data. Exceptional performance on 
natural language processing benchmarks or highly accurate responses to questions from academic and 
industry tests and exams could be explained by the inclusion of these objects in the training data. 
“Leaked” private information is also a major concern for text generative models and evidence of such 
information would create similar liability issues (Carlini et. al., 2021). While deep learning models do not 
record strings of text or patches of images within the major architectural components—their weights, 
specialized layers, or attention heads—information from the network can be reconstructed that can 
reveal sources used as training inputs. This behavior is known as memorization. Memorization is 
frequently understood to signify a failure of information generalization. Deep neural networks are 
designed to recognize patterns, latent or explicit, and generalize from the representations of these 
patterns found within the network—this is why they are called models. Concerns about the leaking of 
private information are serious but are not the only issues connected with memorization in machine 
learning; memorization of training data is especially a problem for the testing and evaluation of models. 
Neural networks are not information storage and retrieval systems; their power and performance are 
the result of their exposure to many samples from which they learn to generalize. There are different 
theories of “information retention” in neural networks and the material history of the early 
implementations of machine learning provides evidence for the ongoing slipperiness of the concept of 
memory in machine learning. 
 

The concept of memory was used in multiple distinct ways in machine learning discourse during 
the late 1950s and early 1960s. The interest in developing memory systems during that historical 
moment was tied up in the relays between three overlapping issues: the status of machine learning 
systems as brain models, and related, the issue of perception and memory as mutually implicated, and 
finally the belief that specialized learning machines would be faster than conventional computers. The 
machines that gave machine learning its name were originally developed as an alternative to general-
purpose digital computers. These analog machines needed to sense and store information acquired 
from input data. The various memory mechanisms proposed during this era functioned like semi-
permanent non-volatile storage for these learning machines. They were also the weights used to learn 
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the criteria for classification of input data. They thus played something of a double role in these systems. 
If the weights were the “programming” for these self-organized systems, then they function as a record 
of that programming. Serving as both data and instructions, these weights enable what we now call 
inference on the learned model, which is to say the classification of previously unseen inputs. Memory 
was not only the persistence of information within the model; it was also used to refer to the nature of 
the representations stored as information within the weights. Like the contemporary concern with 
memorization, an exact memory of inputs would mean that the model would likely fail to generalize, 
which is to say that it was not learning.  

 
In Frank Rosenblatt’s April 1957 funding proposal for the research project known as “Project 

PARA” (Perceiving and Recognizing Automaton) that would eventually result in the creation of the Mark 
I mechanical perceptron, Rosenblatt described his recently articulated perceptron rule as not just a 
method for determining decision boundaries between linearly separable data but also as a way of 
conceptualizing memory: “The system will employ a new theory of memory storage (the theory of 
statistical separability), which permits the recognition of complex patterns with an efficiency far greater 
than that attainable by existing computers” (Rosenblatt, 1957). As a brain model—this was the 
motivating research paradigm that Rosenblatt would make clear throughout his unfortunately short 
life—research into machine learning and the perceptron was concerned with using these simulated 
neural networks to understand more about perception and brain function. While visual perception 
dominated early research, this area could not be unlinked from a concern with understanding how 
visual inputs were stored and how memories of previously perceived patterns were compared with new 
stimuli.  

 

 
Figure 1: The Mark I Perceptron (Hay, et. al., 1960). 

 
The “Project PARA” proposal outlines Rosenblatt’s architecture. The system would be composed 

of three layers: the sensory or “S-System,” an association or “A-System,” and finally the response or “R-
System.” This architecture was imagined as a mechanical device and Rosenblatt anticipated this material 
manifestation of his design in all three layers. The “S-System,” he wrote, should be imagined as “set of 
points in a TV raster, or as a set of photocells” and the “R-System” as “type-bars or signal lights” that 
might communicate output by “printing or displaying an output signal.” The “A-System” would be the 
heart, or rather brain, of the perceptron by passing input from the sensors to the response unit by 
operating on the inputs in combination with pre-determined threshold value. The output from the 
multiple A-units, Rosenblatt explained, “will vary with its history, and acts as a counter, or register for 
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the memory-function of the system” (Rosenblatt, 1957). References to the material origins of machine 
learning are scattered throughout the terminology of this field. The weights that are learned from 
samples of training data are called weights because these were weighted connections between 
mechanical devices. The A-System provided the Perceptron’s “memory function,” but what it was 
“remembering” within these weights would be the subject of some debate.  

 
There were a number of other early analog “learning machines” that confronted the same 

problems encountered by Rosenblatt. After being exposed to the Perceptron while working as a 
consultant in the U.S., Augusto Gamba, a physicist at the University of Genoa in Italy created his own 
device known as the PAPA (derived from the Italian rendering of Automatic Programmer and Analyzer of 
Probabilities). Like Rosenblatt’s Perceptron, the PAPA combined memory and the statistical method for 
determining decision-making criteria: 

 
A set of photocells (A-units) receive the image of the pattern to be shown as filtered by a 
random mask on top of each photocell. According to whether the total amount of light is greater 
or smaller than the amount of light falling on a reference cell with an attenuator, the photocell 
will fire a “yes” or “no” answer into the “brain” part of the PAPA. The latter is simply a memory 
storing the “yes” and “no” frequencies of excitation of each A-unit for each class of patterns 
shown, together with a computing part that “multiplies” or “adds logarithms” in order to 
evaluate the probability that an unknown pattern belongs to a given class (Borsellino and 
Gamba, 1961). 
 
Gamba’s PAPA borrows the name “A-unit” from Rosenblatt’s idiosyncratic nomenclature (one of 

the reasons the PAPA has become known as a “Gamba perceptron”) for the Perceptron’s second layer, 
its hidden layer, although in Gamba’s architecture, the device’s “memory” is not found in the association 
layer but in the final “brain” unit.  
 

The relation between the machine’s accumulated weights to the input data was an open 
problem and several different theories were used to explain and interpret the meaning of these values. 
For some historians of machine learning, the simplified mathematical model of a neuron proposed by 
Warren S. McCulloch and Walter Pitts has been assumed to be the major inspiration and basis for many 
working on the first neural networks (McCulloch and Pitts, 1943). While these McCulloch-Pitts neurons 
(as they are called) were incredibly influential, it was another theorical account that yoked together a 
model of perception and memory that would influence the architecture of the most important early 
neural networks. This was the decidedly non-mathematical work of Donald O. Hebb, a Canadian 
psychologist. Hebb’s The Organization of Behavior, proposes a theory that seeks to reconcile what 
otherwise appeared as two distinct accounts of memory by answering the question of “How are we to 
provide for perceptual generalization and the stability of memory, in terms of what the neuron does and 
what happens at the synapse?” (Hebb, 1949). Perceptual generalization is the idea that people can learn 
to generalize from just a few examples of a wide range of objects. As Hebb puts it, “Man sees a square 
as a square, whatever its size, and in almost any setting” (Hebb, 1949). The stability of memory was 
rooted in evidence of a persistent connection or association between particular stimuli and a set of 
neurons. Hebb theorized a solution to this impasse with the idea of locating (in terms of neurons) 
independent patterns of excitation. This idea was of obvious utility to machine learning researchers 
wanting to develop techniques to recognize objects like letters no matter where they appeared, for 
example, shifted to the left or the right, when projected on a two-dimensional set of sensors called the 
“retina.”   
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In an article appearing in 1958, Rosenblatt examined one theory of perception and memory that 
suggested that “if one understood the code or ‘wiring diagram’ of the nervous system, one should, in 
principle, be able to discover exactly what an organism remembers by reconstructing the original 
sensory patterns from the ‘memory traces’ which they have left, much as we might develop a 
photographic negative, or translate the pattern of electrical charges in the ‘memory’ of a digital 
computer” (Rosenblatt, 1958). Instead of memorizing inputs, Rosenblatt explained, the Perceptron 
implemented Hebb’s theory of learning and separated learned patterns from their exact inputs. “The 
important feature of this approach,” Rosenblatt wrote, “is that there is never any simple mapping of the 
stimulus into memory, according to some code which would permit its later reconstruction” (Rosenblatt, 
1958). In these relatively simple machines and simulated networks, the association units might record 
the history of inputs as a collective representation, but they could not reproduce individual memorized 
inputs. For Rosenblatt, this was a sign of the success of the Perceptron; it demonstrated the practicality 
of Hebb’s theory by implementing a memory system in the form of weights that could be used for 
distinguishing between classes of data without memorizing distinct inputs used to train the network. 
This was also Rosenblatt’s grounds for differentiating the Perceptron from mere pattern matching: 
techniques developed contemporaneously with the Perceptron implemented databases of templates 
and accomplished pattern matching by memorizing and matching input samples to entries in a database 
(Dobson 2023). 

 
Research on analog memory units connected two of the major sites in the development of 

machine learning: Rosenblatt’s lab at Cornell University in Ithaca, New York and Stanford Research 
Institute at Stanford University in California (Stanford University would shortly divest itself of the 
laboratory, which would then become known as SRI International). While Rosenblatt’s Mark I 
Perceptron is the best known of the early machines of machine learning, SRI had developed its own 
series of devices, the MINOS and later the MINOS II. While SRI’s first projects implemented the 
Perceptron, researchers would later develop an alternative learning rule. SRI’s MINOS project was a 
platform for evaluating different sensing and preprocessing techniques. George Nagy, a Hungarian-born 
computer scientist, worked with Rosenblatt at Cornell while a graduate student in electrical engineering; 
memory devices for neural networks became the subject of his dissertation and related research. Nagy 
worked with others in Rosenblatt’s Cognitive Systems Research Program (CSRP) group to design and 
construct a second-generation device called the Tobermory.  
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Figure 2: The Tobermory (Nagy, 1963b). 

 

 
Figure 3: Tobermory Components (Rosenblatt, 1962). 

 
The Tobermory took its name from a short story by Saki (H. H. Monroe) that featured a talking 

cat. As its name suggests, it would be a “phonoperceptron” and designed for audio input. Nagy’s 
dissertation, defended in 1962, was titled “Analogue Memory Mechanisms for Neural Nets” and 
examined different possible designs for analog memory devices. Some of the existing options examined 
by Nagy included more experimental electro-chemical devices such as electrolytic integrators and 
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solions and novel but difficult to use at scale film-based photochromic devices using slide projectors. 
Nagy settled on what was known as the “magnetostrictive read-out integrator,” a device suggested by 
SRI’s Charles A. Rosen. This was the tape-wound magnetic core memory device employed by the MINOS 
II and initially designed by SRI staff member Harold S. Crafts (Brain et. al., 1962). It also had the 
advantage of sharing features with the core memory used in conventional digital computers. The labor-
intensive production of these memory devices, as Daniela K. Rosner et. al. argue, is one of several 
important sites of “hidden, feminized work” involved in the creation of mid-century computing (Rosner 
et. al., 2018). Addressing his selection of a tape-wound device for the Tobermory, Nagy wrote: “The 
chief virtue of the electromechanical integrator consists of its inherent stability. The ‘weight’ of a given 
connection is represented by a mechanical displacement, hence it is not subject to variation due to 
ambient changes or fluctuations in power supply level” (Nagy, 1962). Many existing analog alternatives, 
as Nagy notes in his survey, were subject to rapid decay, error, and sometimes were difficult to 
reinitialize or to erase previously stored values.  

 

 
Figure 4: Schematic of Tape-Wound Core Memory for MINOS II (Brain et. al., 1962). 
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Figure 5: Tobermory Perceptron analog core memory. Courtesy of the Computer History Museum. 

 
Despite the ongoing research and development of analog learning machines with memory 

devices during this period, many researchers were simultaneously implementing neural networks as 
simulated machines on conventional digital computers. In their justification for building a learning 
machine, the SRI MINOS team explained what they saw as the deficiency of digital computers: “Their 
major function in the present line of research is to simulate the performance of machine concepts which 
might be mechanized in some form which would be efficient (smaller, faster cheaper, etc.). The general-
purpose digital machine thus appears as a research tool rather than as a final device for pattern 
recognition” (Brain et. al., 1960). In these simulations, the weights were stored in regular core memory 
during training and evaluation and persisted in various offline storage systems. The simulation of 
learning machines was necessary at the beginning of machine learning while engineers worked to 
construct analog machines and find appropriate memory devices, but this paradigm stuck as digital 
computers increased in speed and became easier to program and use. The appeal quickly became 
apparent to researchers. In an article summarizing his research into analog memory devices, Nagy 
speculated that advancements in digital computers might soon render analog memory obsolete. “In 
principle,” he wrote, “any patern recogni�on machine using weighted connec�ons may be simulated on 
a binary machine of sufficiently large capacity” (Nagy, 1963a). Specialized hardware for machine 
learning, although now fully digital and instrumented with layers of so�ware, returned in the late 1980s 
and early 1990s during the high-performance massively parallel computer boom. Today, costly clusters 
of high-density graphical processing units (GPUs) and tensor processing units (TPUs) are being deployed 
to train very large models although these also execute so�ware simulated learning machines. 

 
Early machine learning was primarily directed toward the discrimina�on and classifica�on of 

visual data. These models worked with highly simplified representa�ons of images. They were not 
trained to generate new images. Today’s deep learning models in computer vision and the extremely 
popular Transformer-based large language models are now rou�nely used in genera�ve applica�ons. 
The size of these models combined with these new uses (themselves a func�on of model size), has 
prompted a reconsidera�on of the memory issue. The assump�on that paterns of ac�va�on generalize, 
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as Hebb theorized in biological models, seems to be under pressure when applied to understanding the 
opera�on of ar�ficial neural networks with billions or more parameters. There is strong evidence that 
large language models are memorizing examples from their training and that this behavior is more likely 
in large models (Carlini 2021). The reten�on of this informa�on suggests that these paterns can be 
mapped. Research into the interpretability of deep learning models has discovered some of these 
paterns and demonstrated that sets of neurons can be edited to alter the model’s predic�ons (Meng et. 
al., 2022). This line of inquiry returns us to lingering important ques�ons about the rela�on between 
learning and memory, the differences between generaliza�on and memoriza�on, and the loca�on of 
memory in neural networks that were also present at the founding of the field of machine learning. 
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